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1. INTRODUCTION 

The Quality and Outcomes in Oral and Maxillofacial Surgery (QOMS) project is the quality improvement 

and clinical effectiveness programme for Oral and Maxillofacial Surgery (OMFS), initiated by the British 

Association of Oral and Maxillofacial Surgeons (BAOMS) in 2018. QOMS operates a series of audits across 

several OMFS subspecialties to assess the quality of care provided to patients in OMFS units in the UK. 

The QOMS Oncology & Reconstruction and Non-Melanoma Skin Cancer (NMSC) audits are set apart from 

the other QOMS registries for having published risk-adjustment models built in in their online interface 

and thus providing users with patient-level risk-adjustment as and when data are entered.  

This appendix includes a technical report of the model development and model validation. 

Model development overview 

Statistical models are mathematical representations of observed data. They are used to control for other 

variables (risk-adjustment), to model relationships between variables, and to predict outcomes. Models 

are selected based on how well they fit the original or development/training dataset. Model development 

refers to the curating of a dataset of consecutive surgical episodes from one or more NHS trusts that rec-

ords key ‘independent’ (i.e., that pertain to risk) and ‘dependent’ (i.e. metrics or outcomes measured) 

variables. Independent variables include patient’s characteristics, tumour and treatment factors, all gen-

erally known before a time point after which outcome variables are captured (e.g. before and after sur-

gery). 

Traditional statistical approaches to modelling are logistic and linear regressions for binary and continu-

ous variables, respectively. Alternative statistical methods include Bayesian probabilistic models and re-

cently more complex and computationally intensive methods including decision tree, artificial neural net-

work and automated machine learning techniques.  

Automated machine learning is a specialist field that seeks to ‘turn over’ to machines the transposition of 

data, analysis and validation of model strength in an iterative manner that seeks the ‘best’ or ‘champion’ 

method out of a library of dozens of steps, hundreds of model architectures and a few validation options. 

This automated process takes hours of computational time, and the insights and boundaries of this explo-

ration are documented in this appendix. 

Model validation 

Model validation is a series of steps / process carried out on a ‘champion’ model to verify it achieves its 

intended purpose, i.e., that the model is predictive under the conditions of its intended use. There are 

different levels of validation (Figure 1.1), some take place on the development dataset (internal valida-

tion) or on a new/blind and independent experimental dataset (external validation). Validation tries to 

answer the question about how generalisable a model is and explores if it can be reliably applied on new 
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datasets that may differ on some levels (e.g., patients’ characteristics, setting, locations…) from the devel-

opment dataset.  

Figure 1.1. Model validations 

As internal validation uses the patients from the develop-

ment population, it can always be performed but is limited 

to providing information on the reproducibility of the model. 

Other types of validations use populations that differ from 

the development cohort to varying degrees. Temporal vali-

dation (i.e., the “unseen” population is sampled at an earlier 

or later time point to the development population) is often 

considered to lie midway between internal and external val-

idation. It provides some information on a model’s repro-

ducibility and generalisability. External validation mainly 

provides evidence on the generalisability to various different 

patient populations (e.g., geographic validation, popula-

tions from different types of care facilities or with different 

general characteristics). The extent of validation depends 

on the research question and size of the development co-

hort and not every model needs to be validated in all the 

ways depicted. Adapted from Ramspek et all. (2021) 1 

Early phase of developing risk-adjustment models typically included an ‘internal validation’ process which 

involves splitting the dataset into a training subset (70%) and a test subset (30%) after random division of 

the dataset. Later, “model development” papers describe the use of machine-learning data pipelines, 

which use k-fold validation in which the user specifies the number of sequential dataset division and re-

testing to be done (usually 5-10 ‘folds’). This increases the chance of reporting a ‘fair’ assessment of 

model performance less susceptible to unfavourable or favourable chance division of the dataset, which 

could result in underfitting or overfitting, respectively.  

The models presented here have already been described elsewhere. They were developed independently 

of QOMS. In other words, the care episodes in QOMS were in no way involved in developing the models, 

i.e., the data in QOMS is currently ‘unseen’ data. Therefore, applying those models to the QOMS datasets 

is part of their external validation.  
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2. MATERIAL AND METHODS 

MODEL VALIDATION FOR BINARY OUTCOMES 

Confusion matrix 

When assessing model performance for binary outcomes, it is common to report the different types of 

classification errors seen. They can be summarised in a confusion matrix (Figure 2.1). A confusion matrix 

is similar to a contingency table, where the two different grouping variables used to classify the data are 

the observed and predicted outcomes. Several measures of model performance (sensitivity, precision…) 

can be calculated directly from the confusion matrix (Figure 2.1). In addition, the F1-score, which is the 

harmonic mean between the precision and recall, can also be calculated (formula (2.1)). Machine Learn-

ing approaches favour maximising the F1-score, to take into account the trade-off between precision and 

recall (since an increase in one usually leads to a decrease in the other).  

Figure 2.1. Confusion matrix 

 

 

(2.1)      𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 

The calculations of precision, recall and F1-score require the user to specify what the positive and nega-

tive classes are. Here, we used the common approach to treat each of the two classes (e.g. ‘clear margin’ 

and ‘positive margin’ OR ‘complication’ and ‘ no complication’) in turn as the positive/negative class and 

then to compute for each measure the average over those two values, producing the so-called macro av-

erages of precision, recall and F1-scores. These macro averages consider the performances in the predic-

tions of both classes as equally important and are considered more informative measures than the corre-

sponding micro averages (micro averages are weighted by the numbers of examples in each class and are 
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thus overwhelmingly dominated by the performance in the majority class, due to the large class imbal-

ance in our dataset). Hence in our later papers,2,3 we have reported the macro averages of precision, re-

call, and F1-score in the Results section for the skin margin and free flap risk adjustment models. 

Receiver operating characteristic 

A receiver operating characteristic (ROC) curve is a plot of the true positive rate (TPR or sensitivity) versus 

the false positive rate (FPR):  

(2.2)     𝐹𝑃𝑅 = 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
 

The ROC curve is produced by varying the value of a classification threshold on the probability of the posi-

tive class predicted for each example so that different values of that threshold generate different points 

(TPR and FPR values) on the curve. The area under that curve, which is a popular measure of predictive 

performance, is also reported in the result sections of our papers. 2–6  

The model outputs for each care episode can be aggregated as a ‘mean’ expected outcome for each indi-

vidual participating institution. The risk-adjusted outcomes for all cases then are calculated using the for-

mula for indirect standardisation (2.3). Indirect standardisation can suffer from ‘small numbers’ whereby 

infrequent events in small samples, due to effect of random variation, can disproportionately affect per-

ceived performance.  

(2.3) 𝐷𝐴𝐺 𝑅𝑖𝑠𝑘 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑟𝑎𝑡𝑒 =
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑓𝑜𝑟 𝐷𝐴𝐺𝑖

𝑚𝑒𝑎𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐷𝐴𝐺𝑠
 × 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑟𝑎𝑡𝑒𝑓𝑜𝑟 𝐷𝐴𝐺  

(DAG = Data access group. In QOMS, each DAG represent an individual institution) 

Graphical representation of comparative data for binary outcomes – funnel plots 

Funnel plots are favoured for their ability to graphically demonstrate wider confidence intervals when 

numbers are small. They however suffer from their inability to identify units in which different ‘sub-

groups’ are combined to make an aggregate count. If one hospital has a disproportionate number of par-

ticularly high- or low-risk patients, despite risk-adjustment, this may skew the overall observed rates and 

its graphical representation. 

When applying risk-adjustment models with the intention of publishing comparative data, Verburg et al. 

(2017) 7 recommended to follow the guidance they developed to construct quality assessment graphics 

(Table 2.1).  
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Table 2.1. Summary of the guidance to construct a funnel plot 7  

Step 1. Define the policy-level decisions (i.e., contextual decisions and analytical plan) 

a. The quality indicator and associated external or internal benchmark * 
b. The data source, or registry, and patient population, including inclusion and exclusion criteria 
c. The reporting period 
d. Control limits and whether data analysts are allowed to inflate them to correct for overdispersion, 

which occurs when there is true heterogeneity between institutions, over and above the expected level 
of variation due to randomness. 

(* If no external benchmark is available and an internal benchmark is used instead, it needs to be calculated. This 

will require to have at disposition the observed count of the outcome, the expected count, and the admission 

count, and to calculate the observed rate / proportion of the outcomes, the standardised rate (SR) of the outcome 

and its risk-adjusted rate (RAR)) 

Step 2. Check the quality of the risk-adjustment model used 

Verburg et al. recommended using goodness-of-fit statistics for calibration, the Brier score to indicate overall 
model performance, and the concordance (or C) statistic for discriminative ability. It is worth mentioning that no 
consensus exists on the values of these performance measures to indicate whether a model is or is not of ‘suffi-
cient’ quality for the purpose of benchmarking. 

Step 3. Check if there are a sufficient number of observations per hospital (i.e., power) 

In funnel plots, users should be able to interpret results and reliably assume that an institution inside or outside 
of the control limits does not result from chance. Therefore (for a given significance level, effect size, and statisti-
cal power) a minimum sample size required should be achieved for each institution. It is important to note that 
for low-volume institutions, control limits are essentially meaningless. 

Step 4. Test for overdispersion of the values of the quality indicator. 

A major assumption here is that observed differences are true differences in the quality of care (and random vari-
ations). If there is true heterogeneity between hospitals over and above that expected due to random variation 
(i.e., overdispersion), then this assumption is violated and conclusions from the funnel plot should be drawn care-
fully. 

Step 5. Test whether the values of the quality indicators are associated with institutional characteristics. 

Funnel plots can be used to identify institutions whose performance deviate from a benchmark and not to make 
between-institution comparisons. That’s why it is required to ensure there is no association between quality indi-
cator and hospital characteristics. 

Step 6. Specify how the funnel plot should be constructed (i.e., how data is presented, units, scales…) 

Practically, it means that: 

- Step 2. We also added a re-calibration curve (observed vs. predicted outcome / institution) to as-

sess whether the model over- or under-predicted the outcome. If an institution is above the 1:1 

line, then the model underpredicts and vice versa, 

- Step 3. The minimal sample size was calculated as the number of cases necessary to detect a 50% 

increase (x1.5) of the proportion or standardized rate from the benchmark with at least 80% 

power at 95% and 99% control limits. 

  



QOMS Inaugural Report – Technical appendix  Date: 18/10/2023 

6 
 

MODEL VALIDATION FOR CONTINUOUS OUTCOMES  

As both observed and predicted lengths of stay (LoS) are continuous variables, the prediction accuracy of 

the linear regression can be assessed by calculating:  

- Root-mean-square error (RMSE) as the square root of the mean-square error (MSE): 

(2.4)    𝑀𝑆𝐸 =
1

𝑛
∑(𝑜𝑏𝑒𝑟𝑣𝑒𝑑 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2 and 𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 

- Residual Standard Error (RSE) or model sigma. RSE is a variant of the RMSE adjusted for the num-

ber of predictors in the model. The lower the RSE, the better the model. In practice, the differ-

ence between RMSE and RSE is very small, particularly for large multivariate data. 

- Mean Absolute Error (MAE), like the RMSE, the MAE measures the prediction error. MAE is less 

sensitive to outliers compared to RMSE. 

(2.5)     𝑀𝐴𝐸 =
1

𝑛
∑ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ∨ 

DATASETS USED  

The QOMS metrics for Oncology & Reconstruction currently  

 Complications within 30 days of surgery 

 Length of postoperative hospital stay (in days) 

 Positivity of surgical margins (also applied to NMSC)  

 Complete free flap failure.  

For the recording of complications, some intra-operative complications, like failure to harvest a viable flap 

because of technical error or unintentional transection of cranial nerves, merit recording whereas other 

like chyle leak or haemorrhage controlled with conventional measures do not.  

We will now address an overview of each model in turn. 

FURTHER READING 

The reader is referred to the peer reviewed papers for further information. 

30-day complication 

Model 

Tighe DF, Thomas AJ, Sassoon I, Kinsman R, McGurk M. Developing a 

risk stratification tool for audit of outcome after surgery for head and 

neck squamous cell carcinoma. Head Neck. 2017 Jul;39(7):1357-1363. 

doi: 10.1002/hed.24769. 

Categorical 

Length of hospital stay Tighe D, Sassoon I, Hills A, Quadros R. Case-mix adjustment in audit of 

length of hospital stay in patients operated on for cancer of the head 

and neck. Br J Oral Maxillofac Surg. 2019 Nov;57(9):866-872. doi: 

10.1016/j.bjoms.2019.07.007. 

Categorical & 

continuous 
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HNSCC surgical margin 

Model 

Tighe D, Fabris F, Freitas A. Machine learning methods applied to audit 

of surgical margins after curative surgery for head and neck cancer. Br J 

Oral Maxillofac Surg. 2021 Feb;59(2):209-216. doi: 

10.1016/j.bjoms.2020.08.041. 

Categorical 

Free-flap failure Model Tighe D, McMahon J, Schilling C, Ho M, Provost S, Freitas A. Machine 

learning methods applied to risk adjustment of cumulative sum chart 

methodology to audit free flap outcomes after head and neck surgery. 

Br J Oral Maxillofac Surg. 2022 Dec;60(10):1353-1361. doi: 

10.1016/j.bjoms.2022.09.007. 

Categorical 

Non-melanoma skin can-

cer Surgical Margin 

Model 

 

Tighe D, Tekeli K, Gouk T, Smith J, Ho M, Moody A, Walsh S, Provost S, 

Freitas A. Machine learning methods applied to audit of surgical mar-

gins after curative surgery for facial (non-melanoma) skin cancer. Br J 

Oral Maxillofac Surg. 2023 Jan;61(1):94-100. doi: 

10.1016/j.bjoms.2022.11.280. 

Categorical 
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3. VALIDATING THE ARTIFICIAL NEURAL NETWORK MODEL FOR 30 DAY COMPLICATIONS 

INTRODUCTION 

Multilayer feed-forward neural networks are an important class of neural networks often used for classifi-

cation tasks. They consist of an input layer, one or more fully interconnected hidden layers and an output 

layer (see example in Figure 3.1).  

Figure 3.1. Structure of the classifier network developed for 30-day complications 

 

The interconnections represent weights which are randomised when the network is initialised and ad-

justed during the training phase – most commonly using the backpropagation algorithm or one of its vari-

ants. It consists of a forward pass, where the training data is applied to the inputs and processed by the 

network, followed by a backward pass. This compares the neural network response to the target, gener-

ating an error signal which is propagated backwards through the network. The weights are adjusted in a 

direction such as to reduce the response error. The process is repeated a number of times (epochs) until 

some termination condition is met. 

The number of hidden nodes is critical to the performance of the network. Too few, and it may not have 

the capacity to solve the problem at hand. Too many will result in overfitting, which is characterised by a 

good response to the training data, but poor response to unseen data (i.e., poor generalisation capacity). 

Unfortunately, there is no way to determine the best number of hidden nodes a priori as it depends on 

many factors in the problem domain. In our experiments, we adopted a frequently used method of train-

ing 𝑘 networks with 𝑛 hidden nodes where1 ≤ 𝑛 ≤ 𝑛𝑚𝑎𝑥. In each case the training (70%) and test da-

tasets (30%) are selected randomly from the full data set. This results in a total of 𝑘. 𝑛𝑚𝑎𝑥 networks from 

which the one with the best AUC response to unseen data is selected. 

Artificial Neural Network (ANN) model  

Referring to Figure 3.1, our network has three inputs: Scale of surgery (Scale, integer between 1 and 3), 

High Risk (dichotomic, 0 or 1), and pathological T stage (T, integer between 0 and 4). The AUROC of the 

output p(comp30) was used to select the champion. 
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MatlabR2014b classifier network ‘patternnet’ was used with the Scaled Conjugate Gradient training algo-

rithm without a validation dataset and with cross-entropy as the error function. Training was stopped 

when the minimum gradient reached 0.06, or the number of training epochs reached 200. With 𝑘 =

1000, and 𝑛𝑚𝑎𝑥 = 100, one of the networks with 94 hidden nodes gave the best response to the test 

data with an AUC of 0.85 and a misclassification rate of 22% (Figure 3.2).  

Figure 3.2. Receiver operating characteristic curve of the selected network 

 

From a practical point of view, for each combination of “Scale of surgery”, “High Risk” and “T”, the ANN 

produced a risk of developing complication within 30 days of surgery. The ANN per se could not be built 

into the QOMS registry and applied directly to QOMS dataset, therefore patients were attributed a risk of 

developing complication according to their combination of “Scale”, High Risk” and “T”. The output is a 

probability, which differs for each combination of inputs (Table 3.1). 

The reader’s attention is drawn to the highest risk groups (of 30 day complications), namely those in 

which surgery is for the lower jaw / floor or mouth region reaching the neck for a T3,4 tumour (96.5% and 

87.4%) which are higher rates that in the group receiving >6-hour surgery including free flaps (Scale 3).  

The lesson here is that risk is not linear with operative complexity and surgeons are deterred from the 

most complex operations, usually in the most co-morbid patients. 
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Table 3.1 Artificial Neural Network outputs 

Scale T High-risk %  Scale T High-risk %  Scale T High-risk % 

1 0 0 0.73  2 0 0 33.23  3 0 0 59.45 

1 0 1 77.45  2 0 1 64.53  3 0 1 45.78 

1 1 0 11.63  2 1 0 24.97  3 1 0 52.42 

1 1 1 25.92  2 1 1 34.89  3 1 1 42.86 

1 2 0 17.17  2 2 0 38.48  3 2 0 53.1 

1 2 1 46.48  2 2 1 46.23  3 2 1 60.9 

1 3 0 23.01  2 3 0 61.01  3 3 0 47.83 

1 3 1 96.53  2 3 1 89.74  3 3 1 57.57 

1 4 0 11.12  2 4 0 46.44  3 4 0 46.13 

1 4 1 87.39  2 4 1 19.51  3 4 1 68.44 

APPLYING THE VERBURG GUIDANCE  

Step 1. Define the policy-level decisions 

The quality indicator considered here is the rate of complications within 30 days following head and neck 

surgery. The benchmark of the quality indicator is the cohort average (mean).  

The QOMS team considered only capturing data of ‘severe complications’  (Clavien-Dindo Grade > IIIa) 

but this was deemed unsuitable by the Steering Committee as similar complications can in certain circum-

stances be treated at the bedside or dental chair rather than returning the theatre. Thus, the chance of 

‘gaming’ or changing practice to appear to have a lower rate of ‘severe complications’ was avoided by ap-

plying the ‘All Complication’ model to all post-operative complications. 

Data was extracted from the QOMS Oncology & Reconstruction registry on 31/10/2022 for all cases with 

a cancer diagnosis, created before 01/07/2022 (to maximise the number of cases and allow for data com-

pletion of the outcome variables). The dataset contained 1160 records of which 98 were missing the data 

relative to the actual presence or absence of complications. Of 1062 patients, 246 could not be attributed 

an ANN risk because at least one of the predictors (scale of surgery, High Risk or pathological T stage) was 

missing.   
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Calculating the benchmark (Table 3.2) 

Table 3.2 Results of the Verburg guidance when producing funnel plots 

Organisations Observed  
count 

Expected  
count 

Admission  
count 

Observed rate 
/ Proportion 

SR RAR 

OMFS-107 4 7.083 19 0.211 0.565 0.192 

OMFS-116 4 5.542 9 0.444 0.722 0.245 

OMFS-120 36 47.111 112 0.321 0.764 0.260 

OMFS-130 123 113.036 228 0.539 1.088 0.370 

OMFS-151 12 25.586 50 0.240 0.469 0.160 

OMFS-157 20 25.261 49 0.408 0.792 0.269 

OMFS-161 58 72.038 203 0.286 0.805 0.274 

OMFS-166 10 39.819 84 0.119 0.251 0.085 

OMFS-20 32 28.841 68 0.471 1.110 0.377 

OMFS-58 17 36.432 89 0.191 0.467 0.159 

OMFS-84 3 13.134 27 0.111 0.228 0.078 

Finally, the benchmark values for SR and RAR are calculated:  

- SR benchmark = 0.7707502  

- RAR benchmark = 0.2621208 

Step 2. Check the quality of the risk-adjustment model used 

- Brier Score = 0.2239286 

- Scaled Brier Score = 0.003993198 

- C statistic = 0.6559194 

The calibration of the ANN to QOMS data is weak – moderate. 

- The recalibration curve indicates that the model overestimates the complication rate in 9/11 

cases and underestimates for 2/11 cases. (Figure 3.3). 
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Figure 3.3. Mean predicted vs. observed rates of complication (recalibration curve) by participating hospital 

 

Step 3. Is the number of observations per hospital sufficient? 

- Minimal sample size for observed rate: n = 69  

- Minimal sample size for RAR: n = 101 

Verburg et al 7 recommended that if fewer than half of the hospitals had enough cases to fulfil this crite-

ria, funnel plots should not be constructed. In our cohort, 5/10 hospitals had 69 or more records and only 

3/10 over 101 records.  One hospital (1/11) was excluded for non-participation. 

Funnel plots  9 

The complication rates by participating hospital are shown below in the funnel plots for crude and risk-

adjusted data (Figure 3.4).   

Figure 3.4. Funnel plot for crude probability of complication without correction for overdispersion (left) and for the 

risk adjusted rate of complication with correction for overdispersion (right) 
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4. VALIDATING THE LENGTH OF STAY DECISION TREE 

INTRODUCTION 

The postsurgical length of hospital stay (LoS) risk-adjustment model was built on data from four units 

(638 patients).3 The distribution and the boxplot charts of the LoS in the development dataset show wide 

variations between those units (Figure 4.1). 

Figure 4.1. LoS distribution for the 4 units’ data used for model development 

Initial attempts to model LoS had poor results (mean standard error 55.9 days), even if the data under-

went a Poisson transformation. The main issue was that the data distribution suffered from heterosce-

dasticity (i.e., the variance of the errors is not constant across the range of observations) (Figure 4.2). 

Thus, two pragmatic decisions were made:    

1. To exclude patients with extended LoS (LoS > 50 days). These were ‘almost certainly’, in the au-

thors’ opinion, subsequent to either complications of surgery OR delay in arranging safe domestic 

return from hospital. As post-operative surgical complications are not ‘pre-operative’ variables, 

they are excluded from model design AND as LoS due to domestic needs is often related to hospi-

tal-social services issues, extended LoS distorts the data for non-clinical reasons. 

2. To limit the linear regression analysis to the first 15 days with improvement in fitting reported 

(mean standard error 4.8 days).  

The following linear regression model resulted after optimising the model to use only the variables 

independently predicting for increased LoS (Table 4.1). Tumour classification (AJCC v7) was grouped 

as T1&2 and T3&4. Subsites of anatomical region of the head and neck were grouped as Oral Cavity / 

Lip, Oropharynx to Larynx and ‘Other sites’, though as shown, subsite was not included in the final 

linear regression model. The final inputs into the model were Age, T stage classification, Performance 

status, Tracheostomy, Scale of surgery and High-risk for saliva egress. 
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Figure 4.2. Residual distribution showing heteroscedasticity 

  

Table 4.1 Linear regression model 

Coefficients Estimate SD Error t P-value Reference category 

Intercept -6.9888 2.82555 -2.473 0.01395 <0.05 - 

Age 0.10962 0.03654 3 0.00293 <0.01 - 

T stage (T3&4) 0.09353 1.10087 0.085 0.93235  - 

Performance status 1  1.08614 1.06775 1.017 0.30989  

Performance status 0 Performance status 2 2.24747 1.38265 1.625 0.10514  

Performance status 3 & 4 1.6625 2.0878 0.796 0.42651  

Tracheostomy (Yes) 6.0708 1.42193 4.269 0.0000265 <0.001 Tracheostomy (No) 

High-risk (Yes) 3.21311 1.23278 2.606 0.00962 <0.01 High-risk (No) 

Scale of Surgery 2 3.79137 1.32831 2.854 0.00462 <0.01 
Scale of Surgery 1 

Scale of Surgery 3 8.85271 1.56941 5.641 0.0000000399 <0.001 

Alcohol Minimal  
(<14U/week) 

-0.89413 1.12228 -0.797 0.42627  

No alcohol 

Alcohol Moderate 
(<14U/week) 

2.3253 1.47868 1.573 0.1169  

Alcohol Heavy 
(>40U/week) 

2.20704 1.37171 1.609 0.1087  

Alcohol Ex-heavy 
(previously >40U/week) 

3.23868 1.9429 1.667 0.0966  

       
Multiple R-squared: 0.4452      

Adjusted R-squared: 0.4206      

F-statistic: 18.09 On 13 and 293 degrees of freedom (DF) 

p-value: < 2.2e-16     

 



QOMS Inaugural Report – Technical appendix  Date: 18/10/2023 

16 
 

There followed an attempt to define, using pre-operative data alone, those patients expected to stay less 

than or more than 15 days. Based on a 60% training set, and 40% testing set, a decision tree (with an er-

ror rate of 0.2) was the champion model chosen in this process (Figure 4.3). 

Figure 4.3. Decision tree for < 15 days and ≥ 15 days 

 

Thus, the risk adjustment process for LoS is three simple steps:  

1. Exclude patients who had a LoS beyond 50 days 

2. Apply the Decision tree model on pre-operative data to predict LoS < 15 days or ≥ 15 days 

3. On the cohort predicted to have a short LoS (< 15 days), apply the linear regression equation.  

APPLYING THE VERBURG GUIDANCE  

Step 1. Define the policy-level decisions 

The quality indicator considered here is the rate of short (< 15 days) LoS following head and neck surgery. 

The benchmark of the quality indicator is the cohort average (i.e., internal benchmark).  

Data was extracted from the QOMS Oncology & Reconstruction registry on 31/10/2022 for all cases with 

a cancer diagnosis, created before 01/07/2022 (to maximise the number of cases and allow for data com-

pletion of the outcome variables).  

Of the 1160 QOMS cases retrieved, 190 were excluded for being incomplete (n = 172) or having extended 

LoS (n =18), the final sample size for the analysis of n = 970. Applying the decision tree, 805 and 165 pa-

tients were predicted to have a short (< 15 days) or a long (≥ 15 days) LoS, respectively. The confusion 

matrix is shown below (Table 4.1).  
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Table 4.1. Confusion matrix for the LoS decision tree 

N Predicted Short LoS Predicted Long LoS Total 

Observed Short LoS 684 81 765 

Observed Long LoS 121 84 205 

Total 805 165 970 

The overall accuracy of the model was 79%.  

- Sensitivity: 0.84        

- Specificity: 0.50      

- Positive predictive value: 0.89          

- Negative predictive value: 0.41 

Calculating the benchmarks 

Two sites (OMFS-147 and OMFS-145) had significant missing data and were excluded from this analysis 

onward. At the hospital level, the prediction accuracy ranged from 44.4% to 96.4% (Table 4.2).  

Table 4.2 Results of step of the Verburg guidance when producing funnel plots 

Organisations Observed  
count 

Expected  
count 

Admission  
count 

Observed rate 
/ Proportion 

SR RAR 

OMFS-107 29 28 28 1.036 1.036 1.285 

OMFS-116 14 9 9 1.556 1.556 1.930 

OMFS-120 140 132 122 1.148 1.061 1.316 

OMFS-130 341 319 245 1.392 1.069 1.327 

OMFS-151 66 77 46 1.435 0.857 1.064 

OMFS-157 57 51 46 1.239 1.118 1.387 

OMFS-161 279 257 253 1.197 1.086 1.347 

OMFS-166 83 76 70 1.186 1.092 1.355 

OMFS-20 92 84 76 1.211 1.095 1.359 

OMFS-58 100 99 91 1.099 1.010 1.254 

OMFS-84 40 39 34 1.176 1.026 1.273 

 

At this point in time, we were unable to calculate the benchmark values. The implementation of the 

Length of Stay Decision Tree model in REDCap produces a binary (0 or 1) outcome whereas we need the 

probability calculated in the model to obtain SR and RAR. This will be addressed in the forthcoming year.  

Step 2. Check the quality of the risk-adjustment model used 

- Brier Score, not calculated 

- Scaled Brier Score, not calculated 

- C-statistic = 0.68 
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The model seems to under-estimates the LOS classification for 10 hospitals and over-estimates for one 

(Figure 4.4).  

Figure 4.4 Mean predicted vs. observed rate of complication (recalibration curve) for each hospital 

 

Step 3. Is the number of observations per hospital sufficient? Not computed on this data 

Verburg et al (2018) 7 recommended that if fewer than half of the hospitals had enough cases to fulfil this 

criteria, funnel plots should not be constructed 

Funnel plots 9  

Short vs. long LoS rates by participating hospital 

are showed below in the following funnel plots 

for crude and risk-adjusted data.   

 

 

 

 

Figure 4.5 Funnel plot for long LoS prediction across 
the centres (right) 
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5. VALIDATING THE LINEAR REGRESSION FOR SHORT LENGTH OF STAY 

ALL ELIGIBLE CASES IN THE QOMS ONCOLOGY & RECONSTRUCTION REGISTRY 

For this stage of the analysis, data were extracted from an updated version of the dataset, after contact-

ing data coordinators, encouraging them to further populate critical fields to boost LoS prediction calcula-

tions. Data were extracted from the QOMS Oncology & Reconstruction registry on 22/11/2022. The da-

taset contained 1216 records from 13 hospitals. Of which, 843 patients were predicted to have a short 

LOS and LoS was missing for 182 patients, thus leaving 661 observations for the analysis.  

When a patient is predicted to have a stay <15 days, the predicted LoS is calculated using the short-LoS 

linear model and then compared to the observed LoS to assess the performance of the model. The mean 

absolute error (MAE), root-mean-square error (RMSE) and residual standard error (RSE) for each hospital 

are showed in Table 5.1. The distribution of the MAE and the relationship between MAE and sample size 

by participating hospital are showed in Figures 5.1a and 5.1b respectively. The MAE are in proportion to 

the LoS, i.e., where there is larger spread there is also larger prediction error. 

Table 5.1 Mean absolute error, root-mean-square error and residual standard error by participating hospital 

Organisations Frequency 
(N) 

LoS median 
(days) 

MAE 
(days) 

RMSE 
(days) 

RSE 

OMFS-107 28 2 2.25 62.99 2.25 

OMFS-116 5 11 12.03 60.17 12.03 

OMFS-120 108 5 3.23 348.76 3.23 

OMFS-130 150 10 5.93 888.77 5.93 

OMFS-151 12 7.5 5.47 65.64 5.47 

OMFS-157 36 8.5 4.56 164.20 4.56 

OMFS161 124 2 3.94 489.15 3.94 

OMFS-166 35 8 2.44 85.39 2.44 

OMFS-20 59 7 3.57 210.38 3.57 

OMFS-58 66 4 2.82 186.38 2.82 

OMFS-84 26 3.5 2.45 63.65 2.45 
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Figure 5.1 a) Left. Boxplot of the mean absolute error by participating hospital and b) Right. Mean absolute error vs. 

number of cases by participating hospital 

ALL ELIGIBLE RECONSTRUCTIVE CASES IN THE QOMS ONCOLOGY & RECONSTRUCTION REG-

ISTRY 

A similar analysis to the one above was performed on a subsample containing all eligible reconstructive 

cases.  

Data was extracted from the QOMS Oncology & Reconstruction registry on 22/11/2022. Out of the 1216 

existing records (from 13 hospitals), 358 were predicted to have a short LOS with immediate reconstruc-

tion with free and pedicled flaps. The predicted LOS was missing for 65 patients, leaving 303 observations 

in the analysis. The MAE were computed and plotted (Figure 5.3). Finally, we present a box plot of Ob-

served LoS within the immediate construction group, with superimposed median predicted LoS as a 

graphical way of showing deviation from ‘expected’ performance (Figure 5.4). 

Table 5.2  

Organisations Frequency 
(N) 

LoS median 
(days) 

MAE 
(days) 

RMSE 
(days) 

RSE 

OMFS-107 5 5 2.249643 14.95 2.99 

OMFS-116 3 11 12.034 38.95 12.98333 

OMFS-120 39 10 3.229259 181.13 4.644359 

OMFS-130 112 12 5.925133 757.48 6.763214 

OMFS-151 6 17.5 5.47 55.5 9.25 

OMFS-157 19 11 4.561111 103.73 5.459474 

OMFS-161 40 13 3.944758 342.05 8.55125 

OMFS-166 24 11 2.439714 70.32 2.93 

OMFS-20 26 10 3.565763 142.25 5.471154 

OMFS-58 18 10 2.823939 52.57 2.920556 

OMFS-84 11 9 2.448077 45.44 4.130909 
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Figure 5.3 Boxplot of the mean absolute error by participating institution 

 

Figure 5.4 Boxplots of actual LoS by participating institution combined with the median predicted LoS (red) 

 

CHAPTER REFERENCES 
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Risk Stratification Tool for Audit of Outcome After Surgery for Head and Neck Squamous Cell Carci-
noma.” Head & Neck 39 (7): 1357–63.  
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6. VALIDATING THE ONCOLOGY MARGINS PREDICTION MODEL 

INTRODUCTION 

The quality indicator considered here is the rate of positive margins.  

For most tumours, the values for deep and mucosal margins should be collected. Therefore, to predict 

whether a patient is at risk of having positive margins (i.e., <1mm), both needs to be considered and 

merged into one variable. The following logic was applied (Figure 6.1):  

- If either deep OR peripheral mucosal margin is <1mm, then the overall margin status is positive, 

even if one of the margins is missing.  

- If both deep AND peripheral mucosal margins are >1mm, then the overall margin status is “clear”.  

Figure 6.1 Combined margin process 

 

The model uses a Bayes probability table. The weightings are combined to produce a ‘posterior probabil-

ity’ following Bayes formula.10 The predicted margin status can be calculated for each case depending on 

pathological T stage classification, presence of extracapsular spread and anatomical subsite of the head 

and neck tumour, using the probability table below (Table 6.1). 
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Table 6.1 Bayes probability table 
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Margin             

Clear or close 0.00 0.05 0.74 0.07 0.01 0.00 0.00 0.07 0.01 0.03 0.02 0.01 

Positive 0.00 0.03 0.58 0.07 0.01 0.01 0.00 0.1 0.01 0.15 0.01 0.02 

             

Stage T0 T1 T2 T3 T4        

Clear or close 0.05 0.36 0.27 0.09 0.23        

Positive 0.11 0.17 0.22 0.1 0.41        

             

ECS No ECS ECS           

Clear or close 0.83 0.17           

Positive 0.63 0.37           

ECS = Extracapsular spread 

DISTRIBUTION OF MUCOSAL AND DEEP MARGINS 

The distribution of mucosal margins (n = 711) is displayed in Figure 6.2 (left). The size of mucosal margins 

ranged from 0 to 75mm, with a median of 5mm and an average of 5.6mm. The distribution of deep mar-

gins (n = 703) is displayed in Figure 6.3 (right). The size of deep margins ranged from 0 to 75mm, with a 

median of 5mm and an average of 5.0mm. In fact, three cases of margins over 25mm were challenged 

with email communication to the data co-ordinators. 

Figure 6.2 Distribution of mucosal margins (left) and deep margins (right) 
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RESULTS OF THE PREDICTION MODEL 

The margins prediction model was developed by Tighe D et al. 2  

Data were extracted from the QOMS Oncology & Reconstruction registry on 22/10/22 created before 

01/07/2022. Out of the available 1160 records, 495 cases missing either one margin value (and the other 

one being ‘clear’) or both and were excluded from the analysis, thus leaving 695 cases. Of 695 cases with 

complete data 134 (19%) could be classified as ‘positive’ or <=1mm margins. In future work, this issue 

around missingness needs to be addressed. The variable predicted risk of positive margins is scaled be-

tween 1-30% (Table 6.3).  

Table 6.3 Predicted risk of positive margins and their corresponding sample size 

Predicted 
risk 

n 
Predicted 

risk 
n 

Predicted 
risk 

n 
Predicted 

risk 
n 

Predicted 
risk 

n 
Predicted 

risk 
n 

4.6 7 10.1 8 13.1 1 16.7 1 22.1 2 28.8 1 

5.7 226 10.5 96 13.7 1 17.2 2 25.7 25 29.6 1 

6.9 13 11.4 4 13.9 95 19.4 3 26.4 1   

8.5 157 11.5 4 15.9 8 20 38 27.9 4   

8.6 4 12.5 3 16.5 12 21.7 1 28.5 1   

APPLYING THE VERBURG GUIDANCE  

Step 1. Define the policy-level decisions 

The benchmark of the quality indicator is the cohort average (i.e., internal benchmark) of positive margin 

status (<+1mm). Data was extracted from the QOMS Oncology & Reconstruction registry on 22/10/22 for 

all cases with oral lip, oral cavity and oropharynx SCC, created before 01/07/2022 (to maximise the num-

ber of cases and allow for data completion of the outcome variables).  

Calculating the benchmark (Table 6.4) 

Table 6.4 Results of step of the Verburg guidance when producing funnel plots 

Institutions Observed 
count 

Expected 
count 

Admission 
count 

Observed rate / 
Proportion 

SR RAR 

162 1 3.453 12 0.083 0.290 0.037 

163 21 31.047 91 0.231 0.676 0.087 

165 5 16.693 54 0.093 0.300 0.038 

188 4 9.837 25 0.160 0.407 0.052 

192 8 15.563 46 0.174 0.514 0.066 

194 1 15.457 39 0.026 0.065 0.008 

199 14 60.380 177 0.079 0.232 0.030 

213 1 10.983 31 0.032 0.091 0.012 

224 9 16.160 50 0.180 0.557 0.071 

260 3 3.820 9 0.333 0.785 0.100 

HAN 25 65.673 185 0.135 0.381 0.049 
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Step 2. Check the quality of the risk-adjustment model used 

- Brier Score: 0.1520967 

- C statistic: 0.6944473 

The recalibration curve indicates that the model over-estimates the rate of positive margins for all hospi-

tals (Figure 6.4). 

Figure 6.4 Recalibration curve for the margin status model 

  

Step 3. Estimating minimal sample size  

- Minimal sample size for observed rate: n = 255 

- Minimal sample size for RAR: n = 770 

Following the Verburg’s recommendation that “if fewer than half of the hospitals have enough admis-

sions (cases) to fulfil this criterion”, the funnel plot should not be constructed. Insufficient hospitals had 

enough data so the funnel plot was not constructed.7 

Step 4. Calculating overdispersion 

The overdispersion factor estimate is 1.807772. Overdispersion can be detected by dividing the residual 

deviance by the degrees of freedom. If this quotient is much greater than one, the negative binomial dis-

tribution should be used. There is no hard cut-off of “much larger than one”, but a rule of thumb is 1.10 

or greater is considered large.  

CONCLUSION 

While the discrimination of the model is satisfactory (AUROC 0.7), the model is over-predicting positive 

margin status with evidence of over-dispersal that will need addressing when more data is accumulated. 

Fewer than half the participating hospitals, at the time of the cut-off, had sufficient numbers to present 

risk-adjusted graphics in the form of a funnel plot. The funnel plot supplied in the QOMS Inaugural Report 
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demonstrates proof of principle. QOMS will investigate if a new HNSCC model is required in the next an-

nual report. 

REFERENCES 
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sive Care Unit Patients.” Statistical Methods in Medical Research 27 (11): 3350–66. 
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7. DESCRIPTION OF THE MODEL FOR FREE FLAP FAILURE 

INTRODUCTION 

The free flap failure model was developed using a dataset of flap complications after free tissue transfer, 

collated from eight NHS units. 6  

The model report  

The free flap failure model selected was a Deep Forest variant (powerful types of ensemble algorithms). 

The selected version used Random Undersampling (RUS) integrated in the learning of AdaBoost and a 

standard Random Forest algorithm as the base ensemble learner of the boosting ensemble (i.e., 

DF(RUSBoost)). RUA is a Machine Learning technique used to balance datasets in which the event of in-

terest is rare (<5%). Other ways of boosting the proportion of the ‘minority class’ like random over-

sampling and synthetic minority oversampling technique (SMOTE) were also tested in the development 

stage of the work. ADABoost and Random Forest combine other aspects of Machine Learning and the 

reader can refer to “Deep Forest RUSBoost” for additional information. 

This configuration was implemented using DF21 11,12, Scikit-Learn 13, and Imbalanced-Learn. 14 

Figure 7.1 shows the final configuration of the DF(Rusboost) architecture design. It is composed of four 

RUSBoost per layer, all containing Random Forest as boosting base learner. The model takes account of 

20 inputs concerning patient, tumour and surgical details that contribute to risk. These inputs are re-

coded in ‘one hot encoding.’ The feature importance graphic demonstrates the relative importance of 

these inputs (Figure 7.2).  

The results of the confusion matrix and 10-fold cross-validation of the DF(RusBoost) configuration and the 

macro averages of precision, recall and F1-scores and AUROC of the resulting model are shown in Tables 

7.1 and 7.2, respectively. Figure 7.2 shows the calibration plot of the model on test-data, demonstrating 

acceptable performance (Hosmer-Lemershow Goodness of fit χ2 = 2 6.9, p = 0.53). 

Figure 7.1. Final configuration – Architecture 
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Table 7.1 Confusion matrix of the 10-fold cross-validation results for the best classification model, considering the mi-

nority class (‘complete flap failure’) as the positive class. 

  Predicted flap outcome 

  Negative Positive 

True flap outcome 
Negative 860 658 

Positive 34 41 

 

Table 7.2 Predictive accuracy results obtained with 10-fold cross-validation for the selected model 

Macro AVG Precision Macro AVG Recall Macro AVG F1-score AUROC Score 

0.51 0.56 0.53 0.655 

 

Figure 7.2 Calibration plot for observed vs. predicted free flap outcome status (0 = flap success and 1 = flap failure) – 

Next page 

Figure 7.3 Calibration plot for observed vs. predicted free flap outcome status (0 = flap success and 1 = flap failure)  

 



QOMS Inaugural Report – Technical appendix  Date: 18/10/2023 

29 
 

Figure 7.2 Variables inputted in the model and their respective relative importance 
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Implementation of the free flap failure model 

The model was embedded within a Python environment. The model processes free flap care episode 

data, received from REDCap with all relevant input variables, and outputs a risk (probability of free flap 

failure) back into REDCap, combined with the observed outcome. The observed outcome and risk ad-

justed are plotted in a Cumulative Sum (CuSUM) chart.  

A bespoke CuSUM module designed by Queen Mary, University London (QMUL) staff, has been embed-

ded into REDCap. With QMUL’s assistance to extract free flap care episode data on a monthly basis, 

QOMS can present updatable unit- and national-level free-flap success/failure data displayed against time 

in the CuSUM chart. This is done using Plotly visualisation graphics.15 The graphical presentation of free 

flap outcome data has options the user can refine (e.g., presenting non risk-adjusted or risk-adjusted 

CuSUM charts) (Figure 7.3).   

When non risk-adjusted graphical display of outcome data is selected, the default increments reflect the 

failure rate of 4.7% (95.3% penalty for failure, 4.7% reward for success). When the risk-adjusted graphical 

display is selected, the baseline increments are adjusted to plot the function: 

(7.1) 𝑋𝑡 = max(0, 𝑋𝑡−1, 𝑊𝑡) , 𝑡 = 1, 2, 3, … 

where Wt is a weight assigned to each value of t. In this study, the risk-adjusted CUSUM charts are up-

dated on a patient-to-patient basis, i.e., each value of t corresponds to a new admitted patient. Conse-

quently, the weights Wt are given by:  

(7.2) 𝑊𝑡 = 𝑌𝑡𝑙𝑜𝑔(𝑅𝐴) − log (1 − 𝑝𝑡 + 𝑅𝐴𝑝𝑡)  

Where, Yt is the outcome of patient t (free flap failure within 30 days of operation date yes/no), Wt is the 

expected probability of the outcome estimated from a prediction model based on data from a reference 

period and RA >1 is a specified Odds Ratio (OR) increase in the outcome rate, as compared to the refer-

ence period, that the risk-adjusted CUSUM chart is set to detect. We set it at 2 (or twice the expected 

rate).  

The weight, Wt, is set as positive if the patient did not have the outcome, and negative if they did and its 

absolute value is large if the outcome is unexpected. Thus, if more patients had free tissue failure than 

predicted, the CuSUM function would decrease (Figure 7.4).  
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Figure 7.4 A snapshot of a single DAG’s CuSUM chart (see next page for instructions on how to use the CuSUM module 

in REDCap) 

 

VALIDATING THE MODEL FOR FREE FLAP FAILURE 

The quality indicator considered here is the rate of free flap failure. Data was extracted from the QOMS 

Oncology & Reconstruction registry on 22/10/22 created before 01/07/2022. 

The overall complete flap failure rate was 72/1159 (4.7%). The partial flap failure rate was lower (2%). 

There was substantial variation in the coding of partial flap failure, and each had different implications to 

the patient; because of the relative rarity we decided to not model partial flap failure at this stage. Fur-

ther, a more clinically useful classification has since been published that looking forward, will improve the 

coding of partial flap failure within QOMS. 16  

External validation of the free flap model had not been attempted at the time of writing. We will aim to 

publish an external validation of the free flap model in 2023.  
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How to use the CuSUM module in REDCap 

Using the following interfaces on the left-hand side to adjust the plots:  

1. CuSUM type 

a. Select between a regular CuSUM chart or a risk-adjusted CuSUM chart. For risk-

adjusted CuSUM, the risk for each operation must be provided. 

2. Contribution from success or failure 

a. For the regular CuSUM chart, this adjusts how much the CuSUM chart increases for 

a failed operation or decreases for a successful operation. 

b. Doe risk-adjusted CuSUM, choose the Odds scale*: set the hypothesis to test if the 

failure odds ratio is greater than a multiple of the odds ratio expected – this is by 

default set to 2.  

3. Group by DAG 

a. Plot a CuSUM for each DAG (i.e. hospital). 

b. Select “Overlay all groups” to plot in addition to the CuSUM using all DAGs, i.e. na-

tional data 

4. Reset protocol: reset the CuSUM chart to zero using different protocols: 

a. Non-negative: The CuSUM chart can never be negative 

b. Operation-based: reset the CuSUM chart after a certain number of operations (e.g. 

50) 

c. Time-based: reset the CuSUM chart after a certain number of days, requires the 

operation dates to be provided 

5. Inverted: Select this to flip the graph vertically. The default is increment up for ‘success’, 

increment’ down for failure. 

6. Alert and alarm threshold: set the significant level for the alert and alarm lines. Default is 

set at 2SD and 3SD 
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8. MODEL FOR NMSC MARGINS 

DEVELOPMENT OF THE NMSC MARGIN MODEL 

The NMSC margins model was developed with the discreet purpose of ‘shrinking’ the NMSC dataset to 

the minimum size necessary to generate risk-adjustment on a parsimonious set of inputs. 2  

A pathology output of consecutive histology reports for a period of three years was requested from three 

oral and maxillofacial units in the southeast of England. A total of 3354 cases were retrieved and ana-

lysed. The dependent variable was a deep margin with peripheral margin clearance at the 0.5 mm thresh-

old. Predictive models, accounting for patient and tumour factors, were developed using automated ma-

chine learning (Auto-ML) methods.  

Five independent Auto-ML (five-fold cross validation) studies were run with the same dataset for each of 

the Auto-ML optimisation metric, namely AUROC, F1 score, and Recall. The results for each performance 

indicator are provided as macro average (i.e., average of the five runs). Machine learning are resource 

intensive, and the present analysis required 75 hours of Auto-ML analysis when all optimisation metrics 

are considered (3 metrics x 5-fold cross-validation x 5 hours each = 75 hours). The performance metrics 

for each Auto-ML analysis were gathered to determine which one was most suitable for handling unob-

served data and this led us to concentrate on the winner pipeline to locate the optimal strategy to apply 

to unseen data. 

As soon as a pipeline was picked, a thorough examination of its results was conducted. The algorithm 

more frequently chosen by the Auto-ML system in the five-fold cross-validation step was selected. Finally, 

we had to choose a method for each phase of a machine learning model, i.e., Imputation, Rescaling, and 

Data preprocessor, to apply to the final model’s construction phase. Given the “Balancing Strategy” phase 

for instance, we used the same strategy as for the algorithm to choose which method to select (e.g., if 

“weighting” or another technique is more significant, it will be selected for the final pipeline). Upon com-

pletion, we were able to consider the champion model and its pipeline’s phase.  

Each column in Tables 8.1a-c is labelled with the cross-validation number, and each row describes the Auto-

ML-selected pipeline characteristics (e.g., imputation method, algorithm selection, etc). The final column 

in each of the subsequent tables reflects the mean of the classification report metrics chosen for N (i.e., 

N=5) fold validation, such as Precision, Recall, F1, and AUROC. The pipelines were assessed with optimisa-

tion strategies prioritising Recall Macro-Average, F1 Score and AUROC, respectively. 
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Table 8.1 a) Averaged 5-fold cross validation results with Recall-macro average as Auto-ML optimisation metric, b) Av-

eraged 5-fold cross validation results with F1-Macro Average as Auto-ML optimisation metric, and c) Averaged 5-fold 

cross validation results with AUROC as Auto-ML optimisation metric 

(a) Recall 1 2 3 4 5 Average 

Balancing 
Strategy 

Weighting Weighting Weighting Weighting Weighting  

Category 
Coalescence 

No 
coalescence 

Minority 
coalescer 

No 
coalescence 

Minority 
coalescer 

No 
coalescence 

 

Imputation Mean Mean Mean Mean Mean  

Rescaling Power 
Transformer 

Power 
Transformer 

Standardize Quantile 
Transformer 

Quantile 
Transformer 

 

Preprocessor KPCA Fast ICA KPCA Fast ICA KPCA  

Classifier SGD Passive  
Aggressive 

SGD Passive  
Aggressive 

LibLinear SVC  

Precision 0.337 0.303 0.330 0.318 0.337 0.325 

Recall 0.598 0.590 0.614 0.647 0.721 0.634 

F1-SCORE 0.431 0.401 0.429 0.427 0.459 0.429 

AUROC 0.70 0.688 0.712 0.693 0.739 0.7 

 

(b) F1 1 2 3 4 5 Average 

Balancing  
Strategy 

Weighting Weighting Weighting Weighting None  

Category 
Coalescence 

Minority 
coalescer 

No 
coalescence 

Minority 
coalescer  

Minority 
coalescer 

Minority 
coalescer 

 

Imputation Mean Mean Mean Mean Mean  

Rescaling Power  
Transformer 

Min Max Standardize Power  
Transformer 

Quantile  
Transformer 

 

Preprocessor Fast ICA Select Rates  
Classification 

Random Trees  
Embedding 

Fast ICA Random Trees  
Embedding 

 

Classifier Passive Aggressive Extra Trees SGD Extra Trees Bernoulli NB  

Precision 0.310 0.319 0.324 0.351 0.329 0.326 

Recall 0.491 0.557 0.598 0.581 0.663 0.578 

F1-SCORE 0.380 0.405 0.420 0.438 0.440 0.416 

AUROC 0.688 0.672 0.712 0.699 0.745 0.7 
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(c) AUROC 1 2 3 4 5 Aver-
age 

Balancing 
Strategy 

None Weighting None Weighting None  

Category 
Coalescence 

No 
coalescense 

Minority 
coalescer 

Minority 
coalescer 

No 
coalescense 

Minority 
coalescer 

 

Imputation Mean Mean Median Mean Median  

Rescaling Quantile  
Transformer 

Normalize Normalize Robust  
Scaler 

None  

Preprocessor Fast ICA KPCA SPC Fast ICA Random Trees  
Embedding 

 

Classifier LDA Bernoulli  
NB 

Liblinear  
SVC 

MLP Multinomial  
NB 

 

Precision 0.5 0.389 1 0 0.527 0.483 

Recall 0.221 0.360 0.008 0 0.319 0.181 

F1-SCORE 0.306 0.374 0.016 0 0.397 0.218 

AUROC 0.69 0.66 0.6 0.3 0.756 0.6 

For every given performance metric, seen as rows from row 6, bold values are the winners for this one (i.e., by metrics 

we mean first column, by values we mean every float-precision number across the table or classifier’s name as an exception for 

”value”) 

Abbreviations used in Tables 8.1a-c: PCA = Principal Component Analysis, Kernel PCA = Kernel Principal Component 

Analysis, Fast ICA = Fast Independent Component Analysis, SGD = Stochastic Gradient Descent, LibLinear SVC = Linear 

Support Vector Machine, Bernoulli NB = Bernoulli Naive Bayes, MLP = Multi-Layer Perceptron, Multinomial NB = Mul-

tinomial Naive Bayes, QDA = Quadratic Discriminant Analysis, SPC = Select Percentile Classification, ICA = independent 

component analysis, LSVC = Linear Support Vector Classification, and LDA = Linear discriminant analysis. 

Auto-ML analyses comparison 

Table 8.2 All three optimisation Auto-ML metric analyses average comparison 
 

Auto-ML analysis with optimisation metric AVG Precision AVG Recall AVG 
F1 

AVG AUROC 

Recall Macro-Average 0.325 0.634 0.429 0.7 

F1 Macro-Average 0.326 0.578 0.416 0.7 

AUROC 0.483 0.181 0.218 0.6 

For each analysis, the performance metric winners are highlighted in bold (by analyses we mean the first column, by 

performance metric the second-to-last column, and by values we mean every float-precision integer in the table). 

AVG= Average. 

Champion model (Imputation, Rescaling, Data preprocessor, Classifier) 

Following the method’s section, Table 8.2 shows that the analysis utilising Recall-Macro Average as the 

Auto-ML optimisation metric appears to be the most effective compared to the others. Theoretically, F1-

macro should have been our primary emphasis, but the Auto-ML search optimizer did not identify a way 

to maximise F1 better than the recall-macro average analysis did by maximising the recall measure alone 
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resulting in a better F1 overall. Unfortunately, AUROC appears incapable of optimising anything, and a 

glance at it (Table 8.1c) reveals that it is not an optimisation target worth focusing on. 

Given that we selected to concentrate on the Recall Macro Average optimisation metric analysis, Table 

8.1a contains the selection of two distinct algorithms, namely SGD and Passive Aggressive. To differenti-

ate, we investigate classification metrics such as Precision, Recall, F1-Score, and AUROC in greater depth. 

As a final result, SGD is more consistent. 

We use a similar approach for the balancing strategy, category coalescence, imputation, and rescaling, as 

well as the pre-processing phase, while constructing the final Scikit pipeline using SGD as the champion 

classifier. 

The final champion model is represented in Figure 8.1a.  
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Figure. 8.1   

a) 

 

b) SCC  

c) BCC 

 

It is necessary to read the schema from left to right. It begins with the initial input and successively proceeds to the classifier selection, passing through an imputer 

phase, rescaling phase, and pre-processing phase. The small tags at the bottom of a particular phase represent its hyper parameter. At the conclusion, the model is 

constructed and ready for use, for instance with Python. 
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RESULTS FOR SCC SEPARATE DATASET 

Dataset characteristics 

Table 8.3 Basic characteristics of SCC sepa-

rate dataset 

 Value 

Number of Features 18 

Number of Subjects 980 

Number of Classes 2 

Number of subject class 1 ˜79% 

Number of subject class 0 ˜20% 

Table 8.4 Percentage of missingness per fea-

ture with at least > 0 of missing values 
 

Feature’s name % of missingness 

Tumour thickness 8 

Perineural 1 

Lymphovascular 3 

Grade 0.51 

Level of Invasion 5 

High or low 55 

Maximum dimension 4 

Auto-ML result 

Table 8.5 Averaged 5-fold cross validation results SCC separate dataset 
 

 1 2 3 4 5 Average 

Balancing 
Strategy 

Weighting None None None None  

Category 
coalescence 

Minority 
coalescer 

Minority 
coalescer 

None Minority 
Coalescer 

None  

Imputation Most Frequent Mean Mean mean Mean  

Rescaling Quantile Transformer none Power Transformer None Quantile 
Transformer 

 

Preprocessor FastICA KPCA Polynomial FastICA SPC  

Classifier SGD Passive Aggressive SGD QDA SGD  

Recall 0.85 0.22 0.65 0.42 0.14 0.436 

Precision 0.3 0.52 0.42 0.5 0.6 0.468 

F1-Score 0.44 0.31 0.51 0.39 0.23 0.376 

AUROC 0.75 0.68 0.76 0.74 0.62 0.71 

Champion model (Imputation, Rescaling, Data Preprocessor, Classifier) 

Occasionally, we made exceptions. For instance, the winning preprocessor is Fast ICA regarding the (Ta-

ble 8.5) but after a few trials Select Percentile (SPC) proved to be more responsive to unseen data (see 

other report), thus we chose to finalise the champion model as described in Figure 8.1b. 
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RESULTS FOR BCC SEPARATE DATASET 

Dataset characteristics 

Table 8.6 Basic characteristics of BCC sepa-

rate dataset 

 Value 

Number of Features 20 

Number of Subjects 2309 

Number of Classes 2 

Number of subject 
class 1 

˜82% 

Number of subject 
class 0 

˜17% 

Table 8.7: Percentage of missingness per fea-

ture with at least > 0 of missing values 
 

Feature’s name % of missingness 

Gender 0.09 

Tumour Thickness 64 

Level Of Invasion 60 

High or Low 72 

Maximum Dimension 11 

Auto-ML result 

Table 8.8: Averaged 5-fold cross validation results BCC separate dataset 
 

 1 2 3 4 5 Average 

Balancing 
Strategy 

Weighting None Weighting None Weighting  

Category 
coalescence 

None Minority 
coalescer 

Minority 
coalescer 

Minority 
coalescer 

None N/A 

Imputation mean mean mean mean median  

Rescaling none Power Trans-
former 

Quantile Trans-
former 

standard-
ize 

minmax  

Preprocessor FastICA PCA KPCA FastICA SPC  

Classifier Random 
Forest 

Passive  
Aggressive 

LDA Bernoulli 
NB 

LSVC  

Recall 0.2 0.43 0 0.13 0.34 0.22 

Precision 0.36 0.4 0 0.28 0.36 0.28 

F1-Score 0.26 0.42 0 0.18 0.35 0.242 

AUROC 0.67 0.7 0.67 0.62 0.69 0.67 

Champion model (Imputation, Rescaling, Data Preprocessor, Classifier) 

Occasionally, we made exceptions. For instance, there is not winning rescaler, but we found out that 

Power Trans- former, regarding Table (8.9) proved to be more responsive to unseen data (see other re-

port). Another exception is that no winning algorithms were identified, however Passive Aggressive ap-

peared to be the least damaging fold, so we selected its classifier. Finally, we decided to finalise the cham-

pion model as described in Figure 8.1c. 
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Confusion matrix 

The confusion matrix of the champion models when run on the development dataset (n=3545) for BCC 

and SCC margin prediction are displayed in Table 8.9a and b, respectively.  

Table 8.9 Confusion matrices for the best classifiers found by Auto-sklearn, (a) namely the Passive Aggressive classifier 

on the BCC dataset and (b) the Stochastic Gradient Descent classifier on the SCC dataset. 

 

 

 

 

The predicted probabilities for all cases of BCC and SCC were calculated using the formula below: 

(8.1) 𝑅𝑖𝑠𝑘𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑃𝑀𝑅 =  
𝑚𝑒𝑎𝑛 𝑃𝑀𝑅

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑃𝑀𝑅 𝑓𝑜𝑟 𝑢𝑛𝑖𝑡
× 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑀𝑅 𝑓𝑜𝑟 𝑢𝑛𝑖𝑡 

where PMR = positive margin rate. 

APPLYING BCC AND SCC MODELS TO QOMS DATA 

The BCC and SCC models were applied to QOMS skin data. The BCC dataset contained 345 cases and the SCC 

dataset contained 135 cases with complete records on which to calculate a probability of a positive margin at 

the <0.51mm threshold.  (Tables 8.10 and 8.11). As the equation above describes, the risk adjusted positive 

margin rate was predicted for each unit. 

Table 8.10 Risk adjusted rates of <=0.51mm after excision of Basal Cell Carcinoma 

Cohort 20% 60 345 10% 27% 

Organisation Raw <0.51mm 
Margin 

Numera-
tor 

Denomina-
tor 

Predicted <0.51mm 
Margin 

Risk-adjusted <0.51mm 
margin 

OMFS-107 6% 4 68 13% 5% 

OMFS-130 20% 7 35 6% 36% 

OMFS-157 11% 11 96 3% 38% 

OMFS-28 32% 6 19 11% 31% 

OMFS-58 41% 18 44 27% 15% 

OMFS-84 20% 9 45 4% 46% 

OMFS-94 13% 5 38 8% 17% 

  

(a) Predicted class label 

0 1 

True class label 

0 36 46 

1 52 321 

(b) Predicted class label 

0 1 

True class label 

0 66 55 

1 117 350 
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Table 8.11:  Risk adjusted rates of <=0.51mm after excision of Squamous Cell Carcinoma 

Cohort 26% 35 135 41% 25% 

Organisation Raw <0.51mm 
Margin 

Numera-
tor 

Denomina-
tor 

Predicted <0.51mm 
Margin 

Risk-adjusted <0.51mm 
margin 

OMFS-107 11% 2 18 28% 17% 

OMFS-130 18% 2 11 55% 14% 

OMFS-157 11% 3 27 44% 10% 

OMFS-28 33% 1 3 =0/3 #VALUE! 

OMFS-58 61% 14 23 48% 53% 

OMFS-84 33% 8 24 37% 37% 

OMFS-94 17% 5 29 37% 19% 

VALIDATION OF BCC AND SCC MODELS 

Validation work on the NMSC margin dataset will be completed in 2024 when 2 further cycles (estimated 

1000 further cases are available). 

  



 

42 
 

REFERENCES 

1. Ramspek, C. L., Jager, K. J., Dekker, F. W., Zoccali, C. & Van Diepen, M. External validation of prognos-
tic models: what, why, how, when and where? Clinical Kidney Journal 14, 49–58 (2021). 

2. Tighe, D. et al. Machine learning methods applied to audit of surgical margins after curative surgery 
for facial non-melanoma skin cancer. Brit J Oral Maxillo surg (2022). 

3. Tighe, D., Sassoon, I., Hills, A. & Quadros, R. Case-mix adjustment in audit of length of hospital stay in 
patients operated on for cancer of the head and neck. British Journal of Oral and Maxillofacial Sur-
gery 57, 866–872 (2019). 

4. Tighe, D. F., Thomas, A. J., Sassoon, I., Kinsman, R. & McGurk, M. Developing a risk stratification tool 
for audit of outcome after surgery for head and neck squamous cell carcinoma. Head & Neck 39, 
1357–1363 (2017). 

5. Tighe, D., Lewis-Morris, T. & Freitas, A. Machine learning methods applied to audit of surgical out-
comes after treatment for cancer of the head and neck. British Journal of Oral and Maxillofacial Sur-
gery 57, 771–777 (2019). 

6. Tighe, D. et al. Machine Learning methods applied to risk adjustment of Cumulative Sum chart meth-
odology to audit free flap outcomes after Head and Neck Surgery. British Journal of Oral and Maxillo-
facial Surgery S0266435622002698 (2022) doi:10.1016/j.bjoms.2022.09.007. 

7. Verburg, I. W., Holman, R., Peek, N., Abu-Hanna, A. & de Keizer, N. F. Guidelines on constructing fun-
nel plots for quality indicators: A case study on mortality in intensive care unit patients. Statistical 
Methods in Medical Research 096228021770016 (2017) doi:10.1177/0962280217700169. 

8. Spiegelhalter, D. J. Handling over-dispersion of performance indicators. Quality and Safety in Health 
Care 14, 347–351 (2005). 

9. Spiegelhalter, D. J. Funnel plots for comparing institutional performance. Statist. Med. 24, 1185–1202 
(2005). 

10. Witten, I. H., Frank, E. & Hall, M. A. Data mining: practical machine learning tools and techniques. 
(Morgan Kaufmann, 2011). 

11. Zhou, Z.-H. & Feng, J. Deep Forest: Towards An Alternative to Deep Neural Networks. in Proceedings 
of the Twenty-Sixth International Joint Conference on Artificial Intelligence 3553–3559 (International 
Joint Conferences on Artificial Intelligence Organization, 2017). doi:10.24963/ijcai.2017/497. 

12. Zhou, Z.-H. & Feng, J. Deep forest. National Science Review 6, 74–86 (2019). 

13. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 
12, 2825–2830 (2011). 

14. Lemaître, G., Nogueira, F. & Aridas, C. K. Imbalanced-learn: A Python Toolbox to Tackle the Curse of 
Imbalanced Datasets in Machine Learning. Journal of Machine Learning Research 18, 1–5 (2017). 

15. Plotly: Low-Code Data App Development. https://plotly.com/. 

16. Ho, M. W. et al. Results of flap reconstruction: categorisation to reflect outcomes and process in the 
management of head and neck defects. British Journal of Oral and Maxillofacial Surgery 
S0266435619303213 (2019) doi:10.1016/j.bjoms.2019.08.005. 

 


